34. (a) Determine the real and imaginary parts of
$$\frac{(1+j)^2}{\sqrt{2}(1-j)}$$

(b) What is the polar form of this complex number?
(a) $\frac{(A+j)^2}{(z(A-j))} = \frac{A+j+j-A}{(z(A-j))} = \frac{A+j}{A+j}$
 $= \frac{2j(A+j)}{(z(A+4))}$
 $= \frac{2j-2}{2\sqrt{2}} = \frac{\sqrt{2}}{12}$
 $= \frac{\sqrt{2}}{2\sqrt{2}} - \frac{\sqrt{2}}{12}$
 $\chi = -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}$
(b) $\frac{(A+j)^2}{\sqrt{2}(A-j)} = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}$
 $= cot(\frac{5\pi}{4}) + jsin(\frac{\pi\pi}{4})$
 $= e^{j\frac{\pi\pi}{4}}$

35. Put $z = -2(\cos 30^\circ - j \sin 30^\circ)$:

(a) into the form x + jy,

(b) into exponential form.

(a)
$$z = -2\left[\cos\left(\frac{\pi}{6}\right) - j\sin\left(\frac{\pi}{6}\right)\right]$$

 $= 2\left[-\cos\left(\frac{Tc}{6}\right) + j\sin\left(\frac{Tc}{6}\right)\right]$ $= 2\left(-\frac{13}{2}+j\frac{1}{2}\right)$ $= -\sqrt{3} + j$ (b) $z = -2\left[\cos\left(\frac{\pi}{6}\right) - j\sin\left(\frac{\pi}{6}\right)\right]$ $= 2\left[\cos\left(\frac{5\pi}{6}\right) + j\sin\left(\frac{5\pi}{6}\right)\right]$ =2 e1 5